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Detection of Stationary Foreground Objects Using
Multiple Nonparametric Background-Foreground

Models on a Finite State Machine
Carlos Cuevas, Raquel Martínez, Daniel Berjón, and Narciso García

Abstract— There is a huge proliferation of surveillance systems
that require strategies for detecting different kinds of stationary
foreground objects (e.g., unattended packages or illegally parked
vehicles). As these strategies must be able to detect foreground
objects remaining static in crowd scenarios, regardless of how
long they have not been moving, several algorithms for detecting
different kinds of such foreground objects have been developed
over the last decades. This paper presents an efficient and high-
quality strategy to detect stationary foreground objects, which is
able to detect not only completely static objects but also partially
static ones. Three parallel nonparametric detectors with different
absorption rates are used to detect currently moving foreground
objects, short-term stationary foreground objects, and long-term
stationary foreground objects. The results of the detectors are fed
into a novel finite state machine that classifies the pixels among
background, moving foreground objects, stationary foreground
objects, occluded stationary foreground objects, and uncovered
background. Results show that the proposed detection strategy
is not only able to achieve high quality in several challenging
situations but it also improves upon previous strategies.

Index Terms— Stationary foreground object, abandoned
object, removed object, background subtraction, nonparametric
modeling, background, foreground, finite state machine.

I. INTRODUCTION

DETECTING stationary foreground objects (i.e. fore-
ground objects that become static) is a key task in

many video surveillance systems for public security. Some
typical scenarios are, for example, the detection of unattended
packages in a railway station or in an airport [1], [2], the
detection of stolen objects in a museum [3], the identification
of abandoned objects on roads [4], or the detection of illegally
parked vehicles [5]. Moreover, the detection of stationary
foreground objects allows improving the quality of foreground
object detection strategies in scenarios featuring objects that
stop moving frequently (e.g. people in offices or vehicles on
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urban roads). In these kinds of scenarios, typical detection
strategies lead to frequent misdetections that can be avoided
by detecting not only the moving foreground objects but also
the foreground objects that temporarily remain static [6], [7].

A. Contribution

A high-quality strategy for detecting all kinds of station-
ary foreground objects is proposed. First, three independent
background-foreground nonparametric modeling-based detec-
tors with different absorption rates are applied on each input
image. The first one detects only the moving foreground
objects. The second one also detects the foreground objects
that have recently stopped. The third one detects the mov-
ing foreground objects and the stationary foreground objects
(regardless of how long they have not been moving). Finally,
the results provided by the detectors are used as input of an
efficient Finite State Machine (FSM) that classifies the pixels
among background, moving foreground object, stationary fore-
ground object, uncovered background and occluded stationary
foreground object.

One of the most important contributions in this paper is the
use of nonparametric kernel density estimation (KDE) detec-
tors. The usual methods for detecting stationary foreground
(e.g. parametric methods) summarize the history of each
pixel. However, in constrast, KDE-based methods explicitly
store the most recent values of each pixel, which in turn
allows to factor in the temporal distance from each reference
datum to the input, thus enabling the detection of only those
foreground objects that remain static for a certain time. In this
paper, the proposed KDE-based models include an innovative
selective update mechanism to control the absorption rate of
each detector. In addition, whereas the learning rates of the
models in parametric strategies must be adapted by the users
to the characteristics of the analyzed sequence, the proposed
selective update allows using a single configuration whatever
the content of the sequences. Therefore, the proposed strategy
is more useful than strategies based on parametric methods.

Another important contribution of the proposed strategy
is the simultaneous use of three KDE-based models with
different learning rates, which allows to deal with complex
situations (e.g. occluded foreground) without requiring a com-
plex FSM. To be able to detect these complex situations,
previous works including an FSM only use two moving object
detectors [8]–[10], mainly due to the complex configura-
tion required by the parametric models they use. However,
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using only two detectors requires complex FSMs to provide
successful classifications. Since the proposed selectively
updated KDE-based models can be configured much more
easily, using more than two independent detectors becomes
practical. Moreover, the addition of a third model simplifies
the design of the FSM. Nevertheless, although it has been
found that the addition of a third model simplifies the design
of the FSM, using more than three detectors increases the com-
putational cost without achieving better classification results.

II. RELATED WORK

Over the last two decades, a significant amount of works
describing strategies to detect stationary foreground objects
have been proposed [11].

Most of these strategies are focused on detecting abandoned
objects [12], since the detection of this kind of objects is a
key task in security applications for preventing terrorist inci-
dents and to reduce crime [13]. In many cases, the proposed
strategies just detect abandoned objects [14], [15]. However,
some works include mechanisms to also identify the owners
of the abandoned objects [16]–[18]. Thus, they can determine,
depending on whether the owner stays with the object or not,
if an abandonment can result in a dangerous situation.

There are also approaches focused on detecting stopped
vehicles, since this is of great interest for traffic monitoring
applications and parking surveillance [19]. Some approaches
analyze the behavior of vehicles on roads [20], others focus
on urban scenarios [5], while others consider mixed scenarios
(both roads and cities) [21].

Some works are not limited to the detection of a particular
type of object, but try to detect any moving foreground object
that becomes static [22]–[24]. Additionally, some of these
works not only consider the detection of abandoned objects or
stopped vehicles, but also the detection of people remaining
totally or partially static [25]–[27].

A significant share of the strategies in the literature is based
on tracking algorithms that try to determine which foreground
regions stop moving [19]. The simplest ones try to relate
objects across pairs of consecutive frames by analyzing colors,
distances, velocities, or object sizes [15]. Other strategies are
based on higher-level information [28] or use standard tracking
algorithms (e.g. Kalman-based tracking in [29], a pyramidal
Kanade-Lucas-Tomasi algorithm in [30], or particle filters
in [31]).

Although tracking-based strategies are able to provide suc-
cessful detections in many scenarios, they typically require
establishing the characteristics of the objects to track and,
additionally, because they work at object-level, they are not
able to detect partially static foreground objects (i.e. people
that only move the upper body). Consequently, over the past
few years, most authors have opted for pixel-level strategies,
which are based on an initial foreground segmentation by a
foreground object detector. Some of these pixel-based strate-
gies are based on persistence analyses, whereas others are
based on dual foreground comparisons.

Among the strategies based on persistence analyses, the
simplest ones conclude that a pixel is part of a stationary
foreground object when it is classified as foreground for a

predetermined lapse of time [32], [33] or along several frames
(consecutive [14], [26] or not [23], [34]). Other strategies,
instead of directly analyzing the persistence of the result
provided by the foreground detector, analyze the stability of
the Gaussians associated to each pixel in a Gaussian Mixture
Model (GMM) [35]. When a foreground object appears in a
pixel, a new Gaussian is created in its GMM representing the
new value of the pixel. If the object stops moving, this new
Gaussian begins to gain importance in the mixture. So, by
identifying this situation, it is possible to determine when a
foreground object becomes static. This idea was first proposed
in [25] and, virtually simultaneously, also in [36] (with small
differences between them). Later, it has been incorporated
into other strategies [37]–[39] that are able to detect both
totally and partially static foreground objects. Nevertheless,
they are unable to detect long-term stationary foreground
objects. Additionally, they fail in complex scenarios with
dynamic backgrounds.

The approaches based on dual foreground comparisons
take as starting point the strategy published in [40], which
proposes constructing two binary foreground masks from
two background models with different learning rates. The
model with the fastest learning rate (commonly called short-
term model) must be configured to adapt rapidly to the
changes in the scene, so it only detects short duration changes
(i.e. the objects in motion). In contrast, the model with
the slowest learning rate (long-term model) must be config-
ured to be more resistant against changes. So, it must also
detect long duration changes (i.e. the stationary foreground
objects). In the strategy proposed in [40] and some other later
works [41]–[43], the two models are constructed using GMMs.
However, other modeling choices can also be found in the
literature: nonstatistical models in [44]–[46], single Gaussian
models in [47], median models in [48], or cluster models
in [49]. Many of these strategies are commonly able to provide
successful detections in scenarios with complex backgrounds
and detect partially and totally static foreground objects.
However, they are not able to maintain the detections when
the objects remain static for a long time and they lose the
detected stationary objects when other foreground objects pass
in front of them. Additionally, to provide successful results, the
configurations of the long-term and short-term models must be
adapted to the characteristics of each analyzed sequence. Thus,
the usability of these methods is low.

All the previously described detection strategies are based
on foreground masks obtained from a background model-
ing stage. If the background models are updated with a
blind update mechanism, the objects remaining stationary for
long periods of time cannot be detected because, sooner or
later, these objects are always absorbed by the background
models. On the other hand, if a selective update is used,
the long-term stationary foreground objects can be correctly
detected. However, a selective update mechanism does not
allow to distinguish between stationary and moving foreground
objects. To detect long-term stationary foreground objects, as
well to distinguish them from the moving ones, many authors
use traditional detection methods in conjunction with an FSM.
For example, in [50], a strategy that uses dual foreground com-
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Fig. 1. Block diagram of the proposed system. Notation: round-edged blocks denote data and rectangular blocks denote processes. The green and orange
blocks indicate, respectively, the input and the output of the system.

parisons and an FSM was proposed. An extended description
of this strategy was later proposed in [8]. In [51], an FSM
is supplied with the results provided by a tracking module.
In [52], the FSM is used in conjunction with the results of
a persistence analysis (improved versions of this work were
later published in [9] and [53]). The persistence analysis
in [54] is also supported by an FSM. Finally, in [10] an
FSM is combined with a dual foreground comparison to detect
candidate stationary foreground objects and a tracker is then
used to verify whether such candidates are really abandoned
objects or not.

III. SYSTEM OVERVIEW

The proposed strategy, depicted in Fig. 1, comprises
two main stages. First, a robust foreground detection using
KDE-based nonparametric background and foreground models
is performed. Then, an efficient FSM is used to determine
which foreground objects remain static.

For each new frame, I n , at time n, the foreground objects
in the scene are detected by using three motion detectors with
different absorption rates. The first detector, called “short-term
detector” (STD), detects only those foreground objects that
are in motion in the current frame. The second one, called
“medium-term detector” (MTD), also detects those foreground
objects that have recently stopped. Finally, the third detector,
called “long-term detector” (LTD), detects the foreground
objects in motion and all the foreground objects remaining
static (regardless of how long they have not been moving).

Three nonparametric background models and three
spatio-temporal nonparametric foreground models are used
to perform these detections. The background models differ
in the way in which they are updated: the first one, called
“short-term background model” (STBM), makes use of
a selective update mechanism that rapidly absorbs those

foreground objects that stop moving; the selective update
used in the second model, called “medium-term background
model” (MTBM), results in a slower absorption of such
stationary foreground objects; finally, thanks to the selective
update used in the third model, called “long-term background
model” (LTBM), the stationary foreground objects are never
absorbed by the model. Each of the three background models
is combined with the corresponding foreground model (FM)
in a Bayesian classifier (BC) to obtain a probability of each
image pixel belonging to the foreground of the sequence.
Note that the absorption rates are the only difference
between the proposed background models, and that there
are no differences between the foreground models (all their
parameters are configured with identical values).

The probabilities resulting from the detectors are thresh-
olded to obtain three binary masks (MS , MM and ML ). These
masks are inputs of an efficient FSM that classifies each
pixel into five classes: background (BG), moving foreground
object (MFO), stationary foreground object (SFO), uncov-
ered background (UBG) and occluded stationary foreground
object (OSFO).

IV. FOREGROUND DETECTION

Each of the three proposed detectors is based on comparing
a spatio-temporal nonparametric foreground model [55] and
a nonparametric background model that includes an efficient
selective update mechanism to easily configure the absorption
rate desired for each modeling. In contrast to previous methods
using multiple foreground detectors, the proposed selective
update allows using the same configuration whatever the
content of the analyzed sequence.
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A. Background Modeling

Let xn be a D-dimensional vector containing the appearance
information of a pixel, pn , in the current image, I n , at time n.
Let {xi

β}Nβ

i=1 be a set of Nβ reference samples obtained from the
pixels at the same coordinates of pn in the Tβ previous images.
Applying Gaussian kernels with diagonal covariance matrices,
�β,xn = diag(σ 2

β,1, σ
2
β,2 . . . σ 2
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where wi is a weight, assigned to the i -th reference sample,
determined by the selective update mechanism that is detailed
in section V.

The kernel widths are dynamically estimated as proposed
in [56],

�β,xn( j, j) = m j

0.68
√

2
: j ∈ [1, D], (2)

where m j is the median of the absolute values of the dif-
ferences between the j−th component of the consecutive
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B. Foreground Modeling

Presuming that foreground objects are commonly in motion,
the foreground pdf that a pixel pn belongs to the image
foreground should be estimated not only from previous pixels
at the same spatial position of pn but also from previous
pixels at different coordinates. Therefore, to compute the
foreground modeling, both the vector defining the current pixel
and the foreground reference samples must take into account
the spatial coordinates of the data [55].

Let zn = ((xn)T , (sn)T )T be a D + 2-dimensional
vector, where xn is the appearance vector described in
subsection IV-A and sn = (hn, wn) is a vector contain-
ing the spatial coordinates (row and column) of pn . Let{

zi
φ

}Nφ

i=1
be the set of Nφ reference samples classified as

foreground in the Tφ previous images into a spatial neighbor-
hood around (hn, wn). The pdf that pn belongs to the image
foreground, φ, is estimated as

p
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where α � 1 is a mixture factor, γ is a constant den-
sity of a uniform random variable in the D + 2 com-
ponents defined for the feature vector zn , and �φ,xn =
diag

(
σ 2

φ,1, σ
2
φ,2 . . . σ 2

φ,D, σ 2
φ,H , σ 2

φ,W

)
is the covariance matrix

used in the kernels.

The spatial width values used in this modeling depend
on the number of reference images, Tφ , and on the speed
of foreground objects, i.e. they should be large enough
to take into account, for each foreground object, all the
relevant reference data in all the reference images [57].
Details on the values assigned to these widths are provided
in section VII.

Since the distribution of reference data is not dense, the
widths of the appearance components cannot be determined
using the same procedure of the background. Therefore, these
widths must be manually set. If the widths are too large,
the objects with similar appearance to the background of
the scene will not be correctly detected. On the other hand,
if the selected widths are smaller than the widths used in
the background, false detections will feed back and become
persistent. The values assigned to these widths are also detailed
in section VII.

C. Bayesian Classifier

On the one hand, the background models are obtained using
only appearance information. However, on the other hand,
the foreground modeling is computed by using appearance
and spatial data. Therefore, instead of the typical Bayesian
classifier [58], an alternative one that allows decoupling the
appearance and spatial information is used:

Pr
(
φ|xn) = p (xn|φ, sn)

p (xn|φ, sn) + p (xn|β)
(4)

where p (xn|φ, sn) results from conditioning the foreground
model, p (zn |φ), on a particular spatial location. This condi-
tioned density function is obtained as

p
(
xn|φ, sn) = p (zn |φ)

p (sn |φ)
(5)

where p (sn |φ) is the marginalization of p (zn |φ) over the
D-dimensional set of appearance characteristics. This marginal
density function is obtained as

p
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where γ ′ is a constant density in the spatial components.

D. Foreground Masks

Let PrS (φ|xn), PrM (φ|xn) and PrL (φ|xn) denote the prob-
abilities of pn of being part of the foreground, provided by
the short-term, medium-term and long-term detectors. These
probabilities are thresholded as

Mζ

(
φ|xn) =

{
1 if Prζ (φ|xn) ≥ 0.5

0 if Prζ (φ|xn) < 0.5
: ζ ∈ {S, M, L} (7)

to obtain binary data indicating if each pixel is classified
as part of the foreground (Mζ (φ|xn) = 1) or part of the
background (Mζ (φ|xn) = 0). These binary data will be the
input of the FSM described in section VI.
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Fig. 2. Temporal weight used to perform the selective update of the
background models.

V. SELECTIVE UPDATE

The only difference between the three background models
is the way in which their selective update is performed.
This update is controlled by the weights mentioned in
subsection IV-A, which are obtained as

wi = 1 − ϑPr
(
φ|xi

β

)
, (8)

where Pr
(
φ|xi

β

)
is the probability assigned to the reference

sample xi
β of being part of the foreground and ϑ is a temporal

weight obtained as

ϑ =
{

1 if �n ≤ T0

GT (�n) if �n > T0
. (9)

In this temporal weight, illustrated in Fig. 2, �n is the
temporal distance between the reference samples and the
current one, T0 < Tβ is a predefined constant value that
controls the absorption rate of the model and GT (�n) is a
temporal Gaussian defined as

GT (�n) = exp

(

− (�n − T0)
2

2σ 2
T

)

. (10)

To guarantee that the value of this Gaussian in Tβ is
approximately 0 (i.e. GT

(
Tβ

) ≈ 0), its standard deviation
must be set as

σT ≤ Tβ − T0

3
(11)

Thus, on the one hand, the contribution of the T0 most
recent background reference samples only depends on their
probability to be classified as background, Pr

(
β|xi

β

)
=

1 − Pr
(
φ|xi

β

)
. Therefore, assuming that, at a given time,

the foreground objects are correctly detected, the samples of
such objects will just barely affect the background model
corresponding to the following T0 images. Consequently, even
if the foreground objects stop moving, during such period
their absorption by the background model will be negligible
(the absorption could vary slightly depending on the exact
probability values assigned to the reference samples).

On the other hand, the probability values associated with the
reference samples with �n > T0 lose relevance in the model-
ing as the value of �n increases. Therefore, all the reference
samples (whether they have been classified as foreground or

background) will end up influencing the model. In this way,
foreground objects remaining static will gradually become part
of the background. In other words, the proposed scheme treats
recent reference samples as a selective update and distant past
samples as a blind update, with a soft transition between them.

To work correctly, the proposed strategy requires that the
following two conditions are satisfied simultaneously:

• The STD must absorb the stationary foreground objects
noticeably faster than the MTD.

• The LTD should never absorb the stationary foreground
objects.

Let T0,S , T0,M and T0,L denote the values of T0 assigned to,
respectively, the STD, MTD and LTD. The second condition
is easily satisfied if T0,L = Tβ (pure selective update), whereas
the first condition is satisfied if T0,S < T0,M < Tβ .

The value of T0,S must be higher than the number of frames
that a pixel is covered by the moving objects in the scene.
Therefore, it depends on the size and speed of the moving
objects and on the frame-rate of the sequence (the higher the
frame-rate, the bigger the moving objects and/or the lower
their speed, the higher this value must be set). Regarding T0,M ,
it must be considered that if the difference between T0,S

and T0,M is too small, slow-moving foreground objects could
be erroneously classified as stationary foreground objects.
Conversely, if such difference is too large or if the value
of T0,M is too high, only those foreground objects remaining
static very long periods of time will be detected (i.e. short-term
stationary foreground objects will be misdetected). Typically,
using T0,M = 2T0,S is a good compromise between the
fast detection of SFOs and avoid false classifications due to
excessively slow moving objects.

The results obtained with the proposed detectors in two
different scenarios and using the same configuration (i.e. the
same values of T0) are illustrated in Fig. 3. The first scenario
shows a person that has stopped in front of a door whose color
is similar to that of his sweatshirt. The second sequence shows
the typical abandonment of a backpack (the displayed image
shows a portion of the person who has left the backpack).
It can be observed that the STD has significantly absorbed
the two stationary foreground objects, whereas the MTD has
absorbed them much less. In addition, the figure shows that
the LTD has not absorbed any of the foreground objects.

VI. FINITE STATE MACHINE

In the second stage of the proposed system, the binary
data obtained as described in subsection IV-D are introduced
in an FSM. This machine will classify each current pixel
among five classes: background, moving foreground object,
stationary foreground object, uncovered background (removed
object), and stationary foreground object occluded by another
foreground object.

All the FSMs included in other SMO detection strategies
take as input two binary masks resulting from two foreground
detection algorithms with different update speeds. However,
the proposed FSM takes as input three detection masks. Thus,
in contrast to previous FSMs, the proposed one is able to
obtain successful classifications by using very few states,
which significantly simplifies the operation of the machine.
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Fig. 3. Results obtained with the proposed nonparametric detectors. (a) Original images. (b) Ground-truth. (c) Results from the STD (T0,S = 20). (d) Results
from the MTD (T0,M = 40). (e) Results from the LTD (T0,L = Tβ ). Color notation for the ground-truth images (this notation will be the same for the rest
of figures containing ground-truth images): The moving foreground objects are depicted in yellow and the stationary foreground objects are depicted in pink.

Moreover, whereas other FSMs require the use of auxiliary
variables to avoid premature changes between states, the
proposed FSM does not depend on any parameter. Therefore,
its usability is very high.

An FSM can be defined as a 5-tuple (S, Q, Z , δ, 
 ) [59],
where:

• S is the input alphabet.
• Q is the set of states in the machine.
• Z is the output alphabet.
• δ is a function that, depending on the current state and

the current input, determines the next state.
• 
 is the output function that, depending on the current

state and the current input, determines the output of the
machine.

In the case of the proposed FSM, the elements of this 5-tuple
are defined as follows:

• S is the set of possible combinations of the 3-tuple
(ML, MM, MS).

• Q is the set of 5 states described in subsection VI-A.
• Z is a number (from 0 to 4) indicating the pixel classifi-

cation: 0 for background pixels, 1 for pixels belonging
to moving foreground objects, 2 for pixels belonging
to stationary foreground objects, 3 for uncovered back-
ground and 4 for pixels belonging to occluded stationary
foreground objects.

• δ is the next-state function illustrated in Fig. 4.
• 
 is a function with output values z ∈ {0, 1 . . . 4}

corresponding to the state of a pixel at a given time.

A. State Description

The proposed FSM is composed by 5 states numbered
from 0 to 4. Their descriptions and the conditions that are
necessary to reach them are:

• State 0 (BG - Background): This is the initial state
for every pixel and it denotes that the pixel is part
of the background of the scene. It is reached when a
pixel is classified as background by all three detectors

Fig. 4. Next-step function of the proposed FSM.

(i.e. (ML, MM, MS ) = (0, 0, 0)) and the previous state
was MFO or UBG.

• State 1 (MFO - Moving foreground object): The pixels
in this state are classified as part of a moving foreground
object. It is reached when the pixel is classified as
foreground by all three detectors (i.e. (ML, MM, MS) =
(1, 1, 1)) and the previous state was BG or UBG.

• State 2 (SFO - Stationary foreground object): It denotes
that the pixels are part of a stationary foreground object.
It is reached when a foreground object remains static
along several consecutive frames and, consequently, it is
absorbed by the STD or the MTD, but not by the LTD
(i.e. (ML, MM, MS) = (1, 0, 0) or (ML, MM, MS ) =
(1, 1, 0)). This state is also reached when a pixel in
the state OSFO (stationary foreground objects that are
covered by other foreground objects) is uncovered (i.e.
(ML, MM, MS) 	= (1, 1, 1), with ML = 1).

• State 3 (UBG - Uncovered background): The pixels in
this state are classified as part of an uncovered region
(i.e. a stationary foreground object moves again or a
background object is removed by someone). To reach this
state, a pixel in the states MFO, SFO or OSFO must be
classified as foreground by one of the detectors, while
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being classified as background by a longer-term detector
(i.e. (ML, MM, MS) = (0, 1, 1) or (ML, MM, MS) =
(0, 0, 1)).

• State 4 (OSFO - Occluded stationary foreground object):
The pixels classified in this state belong to station-
ary foreground objects that are temporally occluded by
other foreground objects. It is reached when a pixel is
classified as a stationary foreground object and then,
the three detectors classify it as part of the foreground
(i.e. (ML, MM, MS ) = (1, 1, 1)).

VII. RESULTS

To assess the quality and robustness of the proposed strat-
egy, a large set of sequences, which contains many typi-
cal challenges in stationary foreground detection (long-term
abandonments, foreground objects that remain partially static,
occluded stationary foreground objects, etc.), has been used.
These sequences have been extracted from the following four
databases:

• PETS20061 [60]: It is the most widely used database
in the literature to assess the quality of strategies for
detecting abandoned objects. It was designed to test the
detection of abandoned luggage in seven scenarios of
different complexity. The scenarios were filmed from
multiple cameras. However, since the proposed strategy
does not consider the use of multiple cameras, similarly
to many other previous works [39], [46], [50], only the
sequences captured with the frontal camera (view 3)
have been used in the performed experiments. These
sequences, labeled S1 to S7, contain different kinds
of abandoned objects and also foreground objects that
remain partially static. In addition, in many of them
the abandoned objects are temporally occluded by other
foreground objects.

• i-LIDS2 [61]: This database is the second most used in
the literature to test strategies for detecting stationary
foreground. It contains two sets of sequences to test,
respectively, the detection of abandoned baggage (AB
sequences) and illegally parked vehicles (PV sequences).
Each set is conformed by three sequences of different
difficulty (easy, medium and high). All the sequences
are supplied with XML files describing temporal events
(alarms). In the case of the first set, the alarms start sixty
seconds after the person that has placed the baggage on
the floor leaves the vicinity of such baggage. The alarms
end when the baggage is recovered by his owner. In the
second set, an alarm starts sixty seconds after a vehicle
remains stationary on a no parking zone and the alarm
stops when the vehicle moves again. Since the proposed
strategy does not include any high-level stage to establish
relations between foreground objects (i.e. between the
abandoned objects and their owners), only the second set
of this database (PV sequences) has been considered in
the performed experiments.

1http://www.cvg.reading.ac.uk/PETS2006
2http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

• LASIESTA3 [62]: This database stands out among others
because it is the only existing database with real videos
that are fully annotated at both pixel and object levels.
Additionally, it is the only one including a specific
label for stationary foreground objects. The sequences in
LASIESTA are distributed into many categories address-
ing different challenges in moving object detection.

• ChangeDetection4 [63]: This database has reached a
great popularity since its emergence in 2012. It contains
49 video sequences classified in 10 categories related
to typical challenges in moving object detection. Along
with LASIESTA, it is the only one providing ground-truth
data at pixel level.

It must be noted that PETS2006 and i-LIDS were specif-
ically created to evaluate the performance of stationary fore-
ground object detectors. LASIESTA and ChangeDetection, on
the other hand, are generic databases that include sequences
for addressing not only the challenge of detecting stationary
foreground but many more challenges (robustness against
shadows, illumination changes, dynamic background, moving
cameras, etc.). However, these two databases are the only
ones providing pixel-level foreground masks, which allows
a quantitative analysis of the quality of the results provided
by the evaluated detection strategies. Moreover, such masks
can be used not only to provide measures related to the
detection of SFOs but to evaluate the quality in the detection of
generic foreground objects (i.e. stationary or in motion). Since
it is the focus of this paper, only those sequences containing
stationary foreground objects have been considered. In the case
of the LASIESTA database, there are three sequences with
this kind of objects. Two of them (named “I_CA_01” and
“I_CA_02”) contain foreground objects remaining partially
static. The third one (named “I_MB_01”) shows a typical bag-
gage abandonment. In the case of the ChangeDetection dataset,
there is a category named “Intermittent Object Motion” that
was specifically created for evaluating the quality of the
detectors when the foreground is not always in motion. This
category is composed by six sequences. However, four of
them are bootstrapping sequences (they contain objects in
the initial background that are removed by someone through-
out the sequence). The proposed algorithm has not been
designed to detect such removal events. Consequently, only
the two remaining sequences in the mentioned category have
been finally used. These sequences are named “Sofa” and
“StreetLight”.

The evaluation of the quality of the proposed detection
strategy has been accomplished through three experiments.
The first one (subsection VII-C) is focused on the analysis
of the speed in detecting foreground objects that have stopped
moving, as well as in the ability of the strategy for maintain-
ing the detection of both long-term and occluded stationary
foreground objects. The second experiment (subsection VII-D)
aims to assess the quality of the strategy in the detection of
not only stationary foreground but also moving foreground.
Finally, the third experiment (subsection VII-E) has been

3http://www.gti.ssr.upm.es/data/LASIESTA
4http://www.changedetection.net
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Fig. 5. Some representative results obtained on PETS2006 dataset. (a) Original images. (b) Ground-truth. (c) Results provided by the strategy GS. (d) Results
obtained with the strategy DFC. (e) Results obtained with the strategy DFC-FSM. (f) Results obtained with the proposed strategy. Color notation in the results:
SFO in red, MFO in green, UBG in white, OSFO in blue and BG in black.

designed to evaluate the ability of the proposed strategy to
generate alarms that must be triggered when a foreground
object stops for longer than a specified duration.

All test sequences, their ground-truth and the obtained
results are available at a public website.5

A. Parameter Selection
To reduce the influence of shadows and reflected light in the

detections, all the nonparametric models are obtained using the
appearance vector described in [64], which is composed by the
chromaticity (Rn, Gn) and the module of the gradient of the
brightness, |∇S|.

5http://www.gti.ssr.upm.es/data/

In the case of the background models, only values of Tβ and
T0 must be established. The first one has been set to Tβ = 600,
which is more than enough to model the cyclical background
changes in all the test sequences. Regarding the values of T0,
the performed experiments have shown that using T0,S = 20
and T0,M = 40 all the requirements discussed in section V
are satisfied and, as it is shown in the following subsections,
successful results are obtained in all the evaluated scenarios.

In the case of the foreground models, it is necessary to
set the number of reference images, the spatial width of the
kernels and the appearance width of the kernels. The former
has been set as Tφ = 10, which is typically enough in
any sequence, since the foreground does not typically exhibit
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Fig. 6. Amount of pixels correctly classified as SFO along the sequences of PETS2006 dataset. These curves allow to see the detection speed of the strategies
that are compared and also their ability to maintain the detections when the objects of interest are occluded.

cyclical changes as the background may do. The spatial widths

of the kernels have been set as σ 2
φ,H = σ 2

φ,W =
(

5
3

)2
.

Finally, the appearance width has been set as 0.02, which is
sufficiently larger than the typical values for the background
noise, which are in the order of 10−3 in the set of appearance
components that has been used.

B. Computational Analysis

The proposed strategy has been implemented on a general-
purpose graphics processing unit (GPGPU) nVidia GTX-580.

TABLE I

MEAN COMPUTATIONAL COST PER FRAME IN EACH STAGE OF

THE PROPOSED STRATEGY (288 × 352 RESOLUTION)

Table I shows the computational cost of each stage. The back-
ground and foreground models have been implemented taking
as starting point the implementation described in [57]. In the
case of the background models, since their only difference
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lies in the use of different weights (see eq. (1)), most of the
computational load is shared among them. Therefore, the use
of three models instead of one does not result in a triple cost,
but much less. Regarding the foreground, the input data of
each model depend on previous results. Therefore, in this case
it is not possible to save cost. That is, the cost associated to
the three foreground models triples the cost of a single model.
Finally, it must be noted that the computational cost related to
the FSM is negligible compared to the costs in the previous
stages of the strategy.

C. Experiment 1: Speed and Robustness Against Occlusions

This experiment is focused on measuring the detection
speed of the proposed strategy and proving its ability to
maintain the detection of stationary foreground objects when
they are occluded by other foreground objects. To this end,
the results obtained with the proposed strategy have been
compared with the results provided by the two most used
pixel-level strategies for detecting SFOs. The first strategy
(henceforth “Gaussian Stability (GS)”) is based on an analysis
of the stability of the Gaussians in a GMM associated to
each pixel. This strategy was first proposed in [36] and,
because of its computational efficiency and its high-quality
results in many complex scenarios, it has been used by
several authors over the past few years [37], [39]. The second
strategy (henceforth “Dual Foreground Comparison (DFC)”)
is based on the dual foreground comparison proposed in [40],
which has been taken as starting point by many recent
works [43], [46]. In contrast to the proposed strategy, which
can be successfully applied on all the test sequences by using a
single set of parameters (see subsection VII-A), both of these
detection methods are highly dependent on the selection of
an adequate learning rate for the GMMs. Taking this into
account, these methods have been configured with the best
learning rate that has been found for each sequence (although
this puts the proposed strategy at a disadvantage compared to
these algorithms).

Additionally, the obtained results have also been com-
pared with those provided by the strategy in [50] (hence-
forth “DFC-FSM”), which takes as starting point the dual
foreground in [40] but, similarly to the proposed strategy,
includes an FSM to try to improve the quality of the detections
in sequences with objects that remain static for a long time
and sequences where the stationary foreground objects are
occluded by other foreground objects.

Many of the above referenced works, after applying
the pixel-level detection, include different region-level post-
processing steps that could also be applied to the proposed
strategy. In this experiment, only the quality of the initial pixel-
level detection stage is analyzed. Therefore, the use of these
post-processing steps has not been considered.

The databases selected to carry out these comparisons have
been PETS2006 and LASIESTA. On the one hand, the seven
sequences in PETS2006 show long-term abandoned objects
that, in many cases, are occluded by other foreground objects.
On the other hand, the sequences in LASIESTA contain
foreground objects that stop moving for a while and then
resume their motion.

Fig. 7. Abandoned bag occluded by other foreground objects. (a) Original
image. (b) Ground-truth. (c) Results provided by the strategy GS. (d) Results
provided by the strategy DFC. (e) Results provided by the strategy DFC-FSM.
(f) Results provided by the proposed strategy. Color notation in the results:
SFO in red, MFO in green, UBG in white, OSFO in blue and BG in black.

1) Performance on the PETS2006 Dataset: Some repre-
sentative results obtained with the proposed strategy and
the aforementioned alternative strategies on the sequences of
PETS2006 are illustrated in Fig. 5. The amount of pixels
correctly classified as SFO along such sequences are also
illustrated in the graphics of Fig. 6.

As it can be seen in these figures, the proposed strategy
usually obtains the highest amounts of pixels correctly clas-
sified as SFO. On the one hand, the strategies GS and DFC
are not able to correctly classify those objects remaining static
very long periods of time (this problem is especially severe in
the case of the strategy GS). On the other hand, thanks to the
use of FSMs, the strategy DFC-FSM and the proposed one
are able to maintain the detections of the SFOs regardless of
how long they remain static. However, the strategy DFC-FSM
takes much longer to detect the presence of a SFO.

Moreover, as can be observed in the graphics corresponding
to sequences S4 and S7, the proposed strategy is the only
one that is able to maintain the detection of SFOs when they
are occluded. The rest of the strategies exhibit significant
reductions in the amount of pixels correctly classified as SFO.
The images in Fig. 7 illustrate the results obtained by the four
strategies under study when an abandoned bag is occluded by
another foreground object. It can be observed that the proposed
strategy is the only one that is able to maintain the correct
classification of such abandoned bag.

Finally, as most of the examples in Fig. 5 show, the proposed
strategy is not only able to provide the highest amounts
of correct detections but also avoids erroneous classifica-
tions: it can be observed that strategies DFC and DFC-FSM
erroneously classify as UBG significant amounts of pixels.
These erroneous classifications are mainly due to the fact
that the sequences contain continuous lighting changes due
to many reasons (e.g. camera auto-adjustments or people in
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Fig. 8. Some representative results obtained on the LASIESTA database. (a) Original images. (b) Ground-truth. (c) Results provided by the strategy GS.
(d) Results obtained with the strategy DFC. (e) Results provided with the strategy DFC-FSM. (f) Results obtained with the proposed strategy. Color notation
in the results: SFO in red, MFO in green, UBG in white, OSFO in blue and BG in black.

Fig. 9. Amount of pixels correctly classified as SFO along the sequences of the LASIESTA database. These curves show the speed of the strategies that are
compared to detect the SFOs.

the scene causing shadows). These changes are frequently
detected as foreground by GMMs with high learning rates
(short-term models) but not by GMMs with low learning
rates (long-term models). Consequently, the strategies that are
based on comparing short and long-term GMMs erroneously
classify as UBG those pixels that have been affected by the
lighting changes. Nevertheless, it must be noted that the pixels
erroneously classified as UBG because of lighting changes are
irrelevant in the evaluation of the quality of the algorithms,
since they are treated as what they ultimately are, that is,
background.

2) Performance on the LASIESTA Database: Some repre-
sentative results obtained with the proposed strategy and the
aforementioned alternative strategies on the three sequences
selected from LASIESTA are illustrated in Fig. 8. The amounts
of pixels correctly classified as SFO along such sequences
are illustrated in Fig. 9. In these sequences, the proposed
strategy is the one that detects the SFOs best (it classifies
correctly more pixels than the rest of the strategies and it also
detects the SFOs faster). Again, strategies GS and DFC are
not able to maintain the detection of SFOs when the objects
remain static for too many consecutive frames, whereas the
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Fig. 10. Some representative results in the LASIESTA database considering
the joint detection of MFOs and SFOs. (a) Original images. (b) Ground-truth.
(c) Results with the strategy GS. (d) Results with the strategy DFC. (e) Results
with the strategy DFC-FSM. (f) Results with the proposed strategy. Color
notation in the results: TP in green, FP in black and FN in red.

strategy DFC-FSM takes much longer for detecting a SFO
(the examples illustrated in Fig. 8 show that many pixels of
SFOs remain erroneously classified as part of MFOs).

D. Experiment 2: Detection of MFOs and SFOs

The aim of this experiment is to evaluate the quality of
the proposed strategy in the detection, at pixel level, of both
moving and stationary foreground objects. To carry out this
evaluation, the LASIESTA and the ChangeDetection databases
have been used, since they are the only ones providing
pixel-level labels for both types of foreground. LASIESTA
is a very recent database and, to our knowledge, it has not
been previously used to assess the quality of any strategy
for stationary foreground detection. Hence, in this database
we have compared the results obtained with the proposed
strategy to those achieved with the three strategies described
in the previous experiment (GS, DFC and DFC-FSM). On the

Fig. 11. Some representative results in the ChangeDetection database
considering the joint detection of MSOs and SFOs. (a) Original images.
(b) Ground-truth (as provided by the ChangeDetection dataset). (c) Results
with the strategy FTSG. (d) Results with the proposed strategy.

other hand, ChangeDetection is a more consolidated database
and it has been previously used to assess the quality of only
one strategy (henceforth “FTSG” [27]) for detecting stationary
foreground. Therefore, the results of the proposed strategy in
this dataset have been compared to those obtained with such
strategy. It must be highlighted that, currently, this strategy is
located at the first position in the ranking of the best strategies
assessed with the ChangeDetection database.

This experiment has been done by using the conventional
recall (r ) and precision (p) evaluation parameters,

r = 100
TP

TP + FN
%, p = 100

TP

TP + FP
%, (12)

where TP (true positive) is the amount of pixels correctly
classified as foreground (i.e. as MFO, SFO or OSFO), FN
(false negative) is the number of foreground pixels that have
not been classified as foreground, and FP (false positive) is
the amount of pixels erroneously classified as foreground.
Additionally, their harmonic mean or F-score (F = 2 r ·p

r+p )
has been used to jointly evaluate the recall and the precision.
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TABLE II

START AND END TIMES (IN MINUTES) OF THE ALARMS OBTAINED IN I-LIDS WITH THE PROPOSED STRATEGY AND OTHER APPROACHES

Fig. 12. Quantitative evaluation (SFOs+MFOs) between the proposed
strategy and the alternative ones in LASIESTA (solid geometric shapes) and
ChangeDetection (hollow geometric shapes). The curve lines represent some
isopercentages of the F-score.

Some representative images obtained in this experiment
are illustrated in Fig. 10 (for the results in LASIESTA) and
Fig. 11 (for the results in ChangeDetection). Additionally, the
obtained recall-precision percentages and their corresponding
F-scores are shown in Fig. 12. In the case of the results
obtained in LASIESTA, it can be observed that the proposed
nonparametric background-foreground modeling provides the
highest amounts of correct detections (the highest recall per-
centages). In addition, it also avoids many false detections
due to dynamic changes in the background (for example, the
GMM-based algorithms are not able to model the changes in
the plant in the background of the second example illustrated
in Fig. 10). Consequently, the F-scores obtained with the pro-
posed strategy are significantly higher than those achieved by
the rest of evaluated strategies. Regarding the results obtained
in the ChangeDetection database, the proposed strategy is
also able to beat the quality of the strategy FTSG, better
discriminating between background and foreground, even if
the foreground objects are very small or are camouflaged (see
the objects marked by the red ellipses in Fig. 11).

E. Experiment 3: Alarm Handling

This experiment is focused on demonstrating that the pro-
posed strategy is capable of generating temporal alarms with

Fig. 13. Some representative results obtained in i-LIDS. (a) Original images.
(b) Pixel-level results obtained with the proposed strategy (SFO in red, MFO
in green, UBG in white, OSFO in blue and BG in black). (c) Object-level
masks after applying morphological filtering. (d) Persistence masks (number
of consecutive frames during which each pixel has been classified as SFO or
OSFO). The events that must be detected are highlighted with pink ellipses.
The blue ellipse shows a SFO that does not cause an alarm.

very high precision. For that purpose the i-LIDS database has
been used, since it has been specifically designed to evaluate
the accuracy in the generation of alarms at specific times after
the abandonment of objects. In addition, there are many other
approaches in the literature that have also used this database
to evaluate the temporal precision of their results.

In contrast to the previous experiments, in this one it
is necessary to analyze the obtained results at object level.
Consequently, some typical post-processing operations (mor-
phological opening and closing filters) have been applied to
group pixels in blobs. Additionally, it has been necessary to
define persistence masks in which the values of the pixels
denote the number of consecutive frames during which each
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TABLE III

AMOUNT OF TRUE POSITIVES (TP) AND FALSE POSITIVES (FP),
AT OBJECT-LEVEL, OBTAINED IN I-LIDS WITH THE

PROPOSED STRATEGY AND OTHER APPROACHES

pixel has been classified as part of a SFO. An alarm is
triggered if the persistence mask contains values exceeding
a predefined threshold. The i-LIDS dataset establishes that
an alarm must start 60 seconds after a vehicle stops. Con-
sequently, the threshold has been set to 1500 (the sequences
have been recorded at 25 fps).

Table II summarizes the start and end times of the alarms
generated by the proposed strategy and many other previous
approaches for detecting SFOs. The data in this table show that
the proposed strategy achieves the best temporal precision in
the generation of the alarms. Thanks to the proposed selective
update and to the ability of the KDE-based modeling for taking
into account only the recent history of the pixels, the SFOs
are detected very fast. Moreover, they are also reclassified as
MFOs very shortly after they start moving.

The images in Fig. 13 illustrate some representative results
obtained with the proposed strategy. The first one (left column)
shows a frame in which there is a vehicle that stopped more
than 60 seconds ago (highlighted with a pink ellipse) and a
second vehicle that stopped at a crossroads about 20 seconds
ago. Although both cars are identified as SFOs, the persistence
mask allows to determine that only the first one must result in
an alarm. The images in the second example (middle column)
correspond to a moment in which a vehicle just stopped.
Although it has stopped very recently, it can be observed that
it has already been correctly classified as a SFO. However, its
value in the persistence mask is too low to generate an alarm.
Finally, the last example (right column) illustrates the results
obtained when a stopped vehicle that generated an alarm has
just resumed its motion. It can be noted that in this case the
alarm is about to disappear (i.e. there are almost no pixels
with value higher that 1500 in the persistence mask), which
proves the speed of the proposed strategy also for stopping
alarms.

Finally, Table III shows the obtained results in terms of
events correctly detected (true positives) and undetected events
(false positives). These results show that the proposed strategy
provides a 100% of both recall and precision. There are
other previous approaches (e.g. Maddalena [26]) that also
provide the same quality. However, they typically require to
use a specific set of parameters in each sequence. Conversely,
the results obtained with the proposed strategy have been
achieved using the same set of parameters in all the sequences,
which proves its great usability compared to other previous
strategies.

VIII. CONCLUSIONS

A high-quality strategy for detecting stationary foreground
objects at pixel level has been proposed. This strategy is
suitable for detecting foreground objects that are totally
or partially static in a large variety of complex situa-
tions (e.g. long-term stationary foreground objects, dynamic
backgrounds, camouflage, or stationary foreground objects
occluded by other foreground objects).

First, three background-foreground nonparametric detectors
with different absorption rates allow detecting, respectively,
moving foreground objects, short-term stationary foreground
objects, and long-term stationary foreground objects. The
absorption rates of these detectors are easily controlled thanks
to an efficient selective update mechanism that allows using
the same configuration whatever the content of the analyzed
sequence, thus offering better usability than previous strategies
also based on detectors with different learning rates.

Then, the outputs provided by the three detectors are used
as input of a simple and efficient finite state machine that
classifies the pixels among background, moving foreground
objects, stationary foreground objects, uncovered background
and occluded stationary foreground objects. This machine
allows to correctly classify the stationary foreground objects
regardless of how long they have remained stationary and,
additionally, it is able to maintain the detections when the
stationary objects are occluded by other foreground objects.

The proposed strategy has been tested on a wide vari-
ety of sequences containing critical situations. The obtained
results have shown that the proposed strategy is able to pro-
vide successful classifications in many challenging scenarios
and that it significantly improves upon the results provided
by previous strategies for detecting stationary foreground
objects.

Despite the successful results obtained in many sequences
from four databases, there are some issues that the proposed
strategy is not able to deal with: bootstrapping sequences
(sequences starting with background objects that are removed
by someone) and multi-layered stationary objects (i.e., station-
ary objects covering other stationary objects). In the future it is
intended to complete the proposed strategy to be able to deal
with these problems. In the case of bootstrapping sequences,
it would be possible to improve the quality of the results by
adding additional object-level stages to discriminate between
removals and abandonments. Regarding the case of multi-
layered stationary objects, it could probably be addressed
by including “parallel” finite state machines that would start
working once a pixel were classified as part of an occluded
stationary object.
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